9,306 research outputs found

    An extended space approach for particle Markov chain Monte Carlo methods

    Full text link
    In this paper we consider fully Bayesian inference in general state space models. Existing particle Markov chain Monte Carlo (MCMC) algorithms use an augmented model that takes into account all the variable sampled in a sequential Monte Carlo algorithm. This paper describes an approach that also uses sequential Monte Carlo to construct an approximation to the state space, but generates extra states using MCMC runs at each time point. We construct an augmented model for our extended space with the marginal distribution of the sampled states matching the posterior distribution of the state vector. We show how our method may be combined with particle independent Metropolis-Hastings or particle Gibbs steps to obtain a smoothing algorithm. All the Metropolis acceptance probabilities are identical to those obtained in existing approaches, so there is no extra cost in term of Metropolis-Hastings rejections when using our approach. The number of MCMC iterates at each time point is chosen by the used and our augmented model collapses back to the model in Olsson and Ryden (2011) when the number of MCMC iterations reduces. We show empirically that our approach works well on applied examples and can outperform existing methods.Comment: 35 pages, 2 figures, Typos corrected from Version

    Generalization of the density-matrix method to a non-orthogonal basis

    Full text link
    We present a generalization of the Li, Nunes and Vanderbilt density-matrix method to the case of a non-orthogonal set of basis functions. A representation of the real-space density matrix is chosen in such a way that only the overlap matrix, and not its inverse, appears in the energy functional. The generalized energy functional is shown to be variational with respect to the elements of the density matrix, which typically remains well localized.Comment: 11 pages + 2 postcript figures at the end (search for -cut here

    The Decay Properties of the Finite Temperature Density Matrix in Metals

    Full text link
    Using ordinary Fourier analysis, the asymptotic decay behavior of the density matrix F(r,r') is derived for the case of a metal at a finite electronic temperature. An oscillatory behavior which is damped exponentially with increasing distance between r and r' is found. The decay rate is not only determined by the electronic temperature, but also by the Fermi energy. The theoretical predictions are confirmed by numerical simulations

    Bayesian Covariance Matrix Estimation using a Mixture of Decomposable Graphical Models

    Get PDF
    Estimating a covariance matrix efficiently and discovering its structure are important statistical problems with applications in many fields. This article takes a Bayesian approach to estimate the covariance matrix of Gaussian data. We use ideas from Gaussian graphical models and model selection to construct a prior for the covariance matrix that is a mixture over all decomposable graphs, where a graph means the configuration of nonzero offdiagonal elements in the inverse of the covariance matrix. Our prior for the covariance matrix is such that the probability of each graph size is specified by the user and graphs of equal size are assigned equal probability. Most previous approaches assume that all graphs are equally probable. We give empirical results that show the prior that assigns equal probability over graph sizes outperforms the prior that assigns equal probability over all graphs, both in identifying the correct decomposable graph and in more efficiently estimating the covariance matrix. The advantage is greatest when the number of observations is small relative to the dimension of the covariance matrix. The article also shows empirically that there is minimal change in statistical efficiency in using the mixture over decomposable graphs prior for estimating a general covariance compared to the Bayesian estimator by Wong et al. (2003), even when the graph of the covariance matrix is nondecomposable. However, our approach has some important advantages over that of Wong et al. (2003). Our method requires the number of decomposable graphs for each graph size. We show how to estimate these numbers using simulation and that the simulation results agree with analytic results when such results are known. We also show how to estimate the posterior distribution of the covariance matrix using Markov chain Monte Carlo with the elements of the covariance matrix integrated out and give empirical results that show the sampler is computationally efficient and converges rapidly. Finally, we note that both the prior and the simulation method to evaluate the prior apply generally to any decomposable graphical model.Covariance selection; Graphical models; Reduced conditional sampling; Variable selection

    Total energy global optimizations using non orthogonal localized orbitals

    Full text link
    An energy functional for orbital based O(N)O(N) calculations is proposed, which depends on a number of non orthogonal, localized orbitals larger than the number of occupied states in the system, and on a parameter, the electronic chemical potential, determining the number of electrons. We show that the minimization of the functional with respect to overlapping localized orbitals can be performed so as to attain directly the ground state energy, without being trapped at local minima. The present approach overcomes the multiple minima problem present within the original formulation of orbital based O(N)O(N) methods; it therefore makes it possible to perform O(N)O(N) calculations for an arbitrary system, without including any information about the system bonding properties in the construction of the input wavefunctions. Furthermore, while retaining the same computational cost as the original approach, our formulation allows one to improve the variational estimate of the ground state energy, and the energy conservation during a molecular dynamics run. Several numerical examples for surfaces, bulk systems and clusters are presented and discussed.Comment: 24 pages, RevTex file, 5 figures available upon reques

    Lower bounds for the conductivities of correlated quantum systems

    Full text link
    We show how one can obtain a lower bound for the electrical, spin or heat conductivity of correlated quantum systems described by Hamiltonians of the form H = H0 + g H1. Here H0 is an interacting Hamiltonian characterized by conservation laws which lead to an infinite conductivity for g=0. The small perturbation g H1, however, renders the conductivity finite at finite temperatures. For example, H0 could be a continuum field theory, where momentum is conserved, or an integrable one-dimensional model while H1 might describe the effects of weak disorder. In the limit g to 0, we derive lower bounds for the relevant conductivities and show how they can be improved systematically using the memory matrix formalism. Furthermore, we discuss various applications and investigate under what conditions our lower bound may become exact.Comment: Title changed; 9 pages, 2 figure

    Why one-size-fits-all vaso-modulatory interventions fail to control glioma invasion: in silico insights

    Full text link
    There is an ongoing debate on the therapeutic potential of vaso-modulatory interventions against glioma invasion. Prominent vasculature-targeting therapies involve functional tumour-associated blood vessel deterioration and normalisation. The former aims at tumour infarction and nutrient deprivation medi- ated by vascular targeting agents that induce occlusion/collapse of tumour blood vessels. In contrast, the therapeutic intention of normalising the abnormal structure and function of tumour vascular net- works, e.g. via alleviating stress-induced vaso-occlusion, is to improve chemo-, immuno- and radiation therapy efficacy. Although both strategies have shown therapeutic potential, it remains unclear why they often fail to control glioma invasion into the surrounding healthy brain tissue. To shed light on this issue, we propose a mathematical model of glioma invasion focusing on the interplay between the mi- gration/proliferation dichotomy (Go-or-Grow) of glioma cells and modulations of the functional tumour vasculature. Vaso-modulatory interventions are modelled by varying the degree of vaso-occlusion. We discovered the existence of a critical cell proliferation/diffusion ratio that separates glioma invasion re- sponses to vaso-modulatory interventions into two distinct regimes. While for tumours, belonging to one regime, vascular modulations reduce the tumour front speed and increase the infiltration width, for those in the other regime the invasion speed increases and infiltration width decreases. We show how these in silico findings can be used to guide individualised approaches of vaso-modulatory treatment strategies and thereby improve success rates
    • …
    corecore